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Table reports mean normalized energies over ten instances. 
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Table reports accuracies 

as in [9].

Adiabatic Quantum Computers (AQCs) excel in 

solving Quadratic Unconstrained Binary Optimization

Problems:

(QUBO)

In most vision problems, constraints are required:

This can be turned into a QUBO with regularization.

Yet, constraints are not exactly satisfied. 

We introduce Q-FW, a true quantum-classical hybrid

solver tailored for binary optimization problems subject 

to linear equality and inequality constraints.

Such problems occur frequently in computer vision. Our 

solver enables the use of quantum hardware for computer 

vision, paving the way to quantum computer vision.

Copositive Programming concerns optimization

over the set of completely positive matrices:

We reformulate (QUBO) with constraints as a (CP):

This reformulation is tight.

The standard form (CP) is:

(CP)

(CP) has the modeling power of non-convex optimization

with the interpretability of convex optimization.

Challenge : Solving (CP) is NP-Hard.

Opportunity : Linear Minimization over Δ is a (QUBO).

Idea: Design a Frank-Wolfe-type algorithm and solve (LM) step with an AQC.

Consider the Augmented Lagrangian:

(LM)

Theoretical guarantees:

(QUBO) subproblem, solved at AQC

AQCs classically work for

binary valued optimization problems.

By integrating it with the FW algorithm, we 

lay the first stone for using AQCs on real-

valued problems in CV and ML.
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